当前位置:首页 > 师资队伍 > 中级及以下 > 浏览文章

张英晗
张英晗

姓  名:张英晗

性  别:

技术职称:教师博士后

所在系所:应用数学系

所在梯队:科学工程计算与动力系统梯队

办公地点:理化楼208

电子邮件:zhangyinghan007@126.com

本科课程:概率论与数理统计A,高等数学AII

研究领域:分数阶随机微分方程

 

简历

教育经历:

2004.9-2008.6 山东科技大学获理学学士学位

2008.9-2011.6 山东科技大学获理学硕士学位

2011.9-2015.7 北京航空航天大学获理学博士学位

工作经历:

2015.9至今 北京科技大学数理学院应用数学系博士后

科研业绩:

2016.1-2017.12 北京科技大学基本科研业务费资助项目“分数阶随机偏微分方程的理论与数值方法研究”,项目编号:FRF-TP-15-100A1,项目主持人

代表性论著:

[1] Z. Bai, Y. Zhang, The existence of solutions for a fractional multi-point boundary value problem, Comput. Math.Appl. (2010) 60: 2364--2372.

[2] Y. Zhang, Z. Bai, Existence of solutions for nonlinear fractional three-point boundary value problems at resonance, J. Appl. Math. Comput.(2011) 36: 417--440.

[3] Y. Zhang, Z. Bai, T. Feng, Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance, Comput.Math.Appl. (2011) 61: 1032--1047.

[4] Z. Bai,Y. Zhang, Solvability of fractional three-point boundary value problems with nonlinear growth, Appl. Math. Comput.(2011) 218: 1719--1725.

[5] R. Qi, X. Yang, Y. Zhang, Full-discrete finite element method for stochastic elastic equation driven by an additive noise, Numerical Methods for Partial Differential Equations. (2013) 29:6 1946--1962.

[6] Y. Zhang, X. Yang, Fractional stochastic Volterra equation perturbed by fractional Brownian motion, Appl. Math.Comput.(2015) 256:1 20--36.

[7] X. Yang, X. Li, R. Qi, Y. Zhang, Full-discrete finite element method for stochastic hyperbolic equation, Journal of Computational Mathematics, (2015) 33:5 533--556.

[8] Y. Zhang, X. Yang, Stochastic elastic equation driven by fractional Brownian motion, Stochastics: An international journal of probability and stochastic processes, (2016) 88:3 415-427.

[9] Y. Zhang, X. Yang, Difference approximation of stochastic elastic equation driven by infinite dimensional noise, Numer.Math.Theor.Meth. Appl. (2016) 9:1 123-146.

[10] Y. Zhang, X. Yang, Stochastic elastic equation driven by multiplicative multi-parameter fractional noise, Stochastics and Dynamics, 2016, accepted.

[11] 张英晗, 杨小远. 二维空间时间分数阶色散方程的差分方法. 北京航空航天大学学报. (2015) 41:12 2296--2301.

[12] 张英晗, 杨小远. 一类带有空间时间白噪音随机弹性方程的全离散差分格式. 计算数学. (2016) 38:1 25--46.

[13]杨小远, 张英晗, 李晓翠. 随机偏微分方程有限元方法. 工业和信息化部“十二五”规划专著, 电子工业出版社, 2015