当前位置:首页 > 科学研究 > 研究方向 > 浏览文章

运筹与控制研究

来源:本站原创 编辑:佚名 时间:2015年03月20日 点击:

 一、梯队简介

本梯队名称为“运筹与控制研究”,主要研究方向有控制理论与控制工程:时滞系统、切换系统的稳定性;最优化方法:区间规划,分裂可行与凸可行问题,变分不等式问题,互补问题的算法及应用,支持向量机,非线性规划等;物流领域:车辆路径问题,选址问题,供应链问题;博弈论;信息安全与计算机取证;几何分析、偏微分方程理论及应用等。梯队成员及办公地址如下

 

梯队名称

负责人

成员

职称

学位

硕士导师

办公室

运筹与控制研究

赵立英

 

教  授

博士

硕士导师

国际处

侯书会

 

副教授

博士

硕士导师

理化楼208

 

徐  尔

副教授

硕士

硕士导师

理化楼208

 

谢铁军

副教授

硕士

硕士导师

理化楼208

 

孙玉华

副教授

博士

硕士导师

理化楼208

 

赵金玲

副教授

博士

硕士导师

理化楼208

 

刘白羽

讲师

博士

 

理化楼208

 

二、代表性科研论文

[1]        BaiyuLIU, Li MA, Invariant sets and the blow up threshold for a nonlocal equation ofparabolic type Nonlinear AnalysisTMA, 110 (2014)141-156. (SCI, IF: 1.612)

[2]        BaiyuLIU, Li MA, Symmetryresults for elliptic Schrödinger systems on half spaces, Journal ofMathematical Analysis and Applications, 401(2013)259-268. (SCI, IF:1.233)

[3]        BaiyuLIU, Li MA, Symmetry results for decay solutions of semilinear elliptic systemson half spaces, Nonlinear Analysis, 75(2012)3167-3177. (SCI, IF:1.536)

[4]        Zhao Jinling, Yang Qingzhi, A simple projection method for solving the multiple-sets split feasibility problem, Inverse Problems in Science and Engineering, Vol. 21, No.3, (2013.04) ,537-546. (EI收录,Accession number: 20130816041902,SCI,IDS Number:263WE)

[5]        Zhao Jinling, Zhang Yanjun, Yang Qingzhi, Modified projection methods for the split feasibility problem and the multiple-sets split feasibility problem, Applied Mathematics and Computation, 219(4) (2012.11):1644-1653. (SCI, IDS Number: 029OB)

[6]        Zhao Jinling, Yang Qingzhi, Several acceleration schemes for solving the multiple-sets split feasibility problem, Linear Algebra and its Applications, 437(7) (2012.10):1648-1657. (SCI, IDS Number: 986UX)

[7]        Zhao Jinling, Yang Qingzhi, Self-adaptive projection methods for the multiple-sets split feasibility problem,  INVERSE PROBLEMS, Vol. 27, No. 3, (2011,3), 文献编号: 035009. (SCI, IDS Number: 721ZM)

[8]        Zhao Jinling, Yang Qingzhi, Gao Hongxiu, A note on Solodov and Tseng's methods for maximal monotone mappings, Journal of Computational and Applied Mathematics, Vol. 234 (2010,7), 1522-1527. (SCI, IDS Number: 598EW)

[9]      Shuhui Hou, SiuMing Yiu, Tetsutaro Uehara, Ryoichi Sasaki, “A Privacy-Preserving Approach for Collecting Evidence in Forensic Investigation”, International Journal of Cyber-Security and Digital Forensics (IJCSDF), Vol. 2, No.1, pp.70-78, 2013

[10]    Shuhui Hou, Ryoichi Sasaki, Tetsutaro Uehara, SiuMing Yiu, “Double Encryption for Data Authenticity and Integrity in Privacy-preserving Confidential Forensic Investigation”, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications((JoWUA), Vol. 4, No.2, pp.104-113, 2013

[11]    Yuhua Sun, Xiumei Xu, Laisheng Wang, Duality and saddle-point type optimality for interval-valued programming, Optimization Letters, 2014.3

[12]    Sun Y H,Wang L S, Optimality conditions and duality in nondifferentiable interval- valued programming, Journal of Industrial and Management Optimization,2013.1

[13]    Sun Y H,Wang L S,Mond-Weir's type duality for interval-valued programming,CSAE 2012 IEEE International Conference on Computer Science and Automation Engineering,2012.5

[14]    Sun Y H,Wang L S,Saddle-point type optimality for interval-valued programming,Proceeding of 2012 International Conference on Uncertainty Reasoning and Knowledge Engineering,2012.8

[15]    Zhao liying, Zhang zhiqiang,Zhao xiangkui.New exponential stability criterion for a class of uncertain switched neutral systems,the 30th chinese control conference,2010,1076-1080.

[16]    Xia yingying, Zhao liying. Study on eutrophication of Guishui Lake based on Grey Markov forecasting model,the 5th International Congress on Mathematical Biology,2011,353-357.

三、科研项目(纵向课题)

(1) 国家自然科学青年基金(2012)【赵金玲、胡毅庆、刘秀芹】

项目名称:非凸可行问题的近似算法

资助经费:18万

项目批准号:11101028

(2) 国家自然科学青年基金(2013)【刘白羽】

项目名称:带有位势项的薛定谔方程组解的整体性质研

资助经费:19万

项目批准号:11201025

(3) 北京市高校青年英才计划(2013)【赵金玲】

项目名称:高阶张量的性质及相关数值计算问题的研究

资助经费:15万

项目批准号:YETP0385

(4) 国家自然科学基金应急管理项目(2015)【赵立英】

项目名称:基于事件触发机制的多通信通道网络控制系统的建模与控制

资助经费:19万

项目批准号:61440058

(5) 教育部留学回国人员启动基金(2010)【侯书会】

项目名称:具有隐私保护功能的数字多媒体实时传送系统的开发

资助经费:3.5万

项目号:11140075

四、国际交流

(1)侯书会,日本东京电机大学未来科学部,2012.6-2012.9

(2)侯书会,香港大学计算机科学系,2011.1-2011.3